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Abstract

This paper presents a fully anisotropic analysis of strip electric saturation model proposed by Gao et al. (1997)
(Gao, H.J., Zhang, T.Y., Tong, P., 1997. Local and global energy release rates for an electrically yielded crack in a

piezoelectric ceramic. J. Mech. Phys. Solids, 45, 491±510) for piezoelectric materials. The relationship between the
size of the strip saturation zone ahead of a crack tip and the applied electric displacement ®eld is established. It is
revealed that the critical fracture stresses for a crack perpendicular to the poling axis is linearly decreased with the

increase of the positive applied electric ®eld and increases linearly with the increase of the negative applied electric
®eld. For a crack parallel to the poling axis, the failure stress is not e�ected by the parallel applied electric ®eld. In
order to analyse the existed experimental results, the stress ®elds ahead of the tip of an elliptic notch in an in®nite

piezoelectric solid are calculated. The critical maximum stress criterion is adopted for determining the fracture
stresses under di�erent remote electric displacement ®elds. The present analysis indicates that the crack initiation
and propagation from the tip of a sharp elliptic notch could be aided or impeded by an electric displacement ®eld
depending on the ®eld direction. The fracture stress predicted by the present analysis is consistent with the

experimental data given by Park and Sun (1995) (Park, S., Sun, C.T., 1995. Fracture criteria for piezoelectric
materials. J. Am. Ceram. Soc 78, 1475±1480). 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials have been extensively used in smart devices as sensors and actuators. The
combined mechanical and electrical loads give rise to su�ciently high stresses in these devices which
result in catastrophic failure. The fracture mechanics of piezoelectric materials have attracted many
theoretical studies (Parton, 1976; Deeg, 1980; Pak and Herrmann, 1986; McMeeking, 1989; Pak, 1990;
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Sosa, 1992; Suo et al., 1992; Suo, 1993; Zhang and Hack, 1992; Yang and Suo, 1994; Dunn, 1994;
Zhang and Tong, 1996 among others). But there are remarkable discrepancies between theory and
experiments (see Pak and Tobin, 1993; Park and Sun, 1995; Kumar and Singh, 1996). The theoretical
studies (Pak and Tobin, 1993) have shown that the applied electric ®eld should inhibit crack
propagation irrespective of its sign. Park and Sun (1995) measured the failure stresses of cracks
perpendicular to the poling axis in compact tension and three point bend specimens made of PZT-4
ceramics and found that the failure stresses are decreased with the increase of the positive applied
electric ®eld (in the same direction as the poling axis) and increased with the increase of the applied
negative electric ®eld. They argued that the fracture process of ceramic materials is a pure mechanical
process and should be controlled only by the mechanical part of the energy release rate.

A strip electric saturation model has been proposed by Gao et al. (1997) in order to explain the e�ects
of the applied electric ®eld on the failure stress of piezoelectric materials. This model can be considered
as a generalization of the classical Dugdale model in fracture mechanics. They thought the piezoelectric
ceramics such as lead zirconate titanate (PZT) and barium titanate (BaTiO3) can be considered as brittle
materials and plastic yielding is rather di�cult for theses materials. But theses materials are electrically
more ductile. The plastic yielding zone ahead of the crack tip is much smaller than the electric
saturation zone. Hence one should take into account the e�ects of the electric saturation and neglect the
e�ects of the plastic yielding. Gao et al. (1997) found that the local energy release rate gives reasonable
prediction which broadly agrees well with the experimental results. But the analysis given by Gao et al.
(1997) is based on a simpli®ed electroelasticity formulation.

A fully anisotropic analysis of the strip electric saturation model for piezoelectric materials is
presented in this paper. The complete coupling between the mechanical and electrical behaviors is taken
into account. The relationship between the size of the strip saturation zone ahead of a crack tip and the
applied electric ®eld is established. It is revealed that the critical fracture stresses for a crack
perpendicular to the poling axis is linearly decreased with the increase of the positive applied electric
®eld and increases linearly with the increase of the negative applied electric ®eld. For a crack parallel to
the poling axis, the failure stress is not e�ected by the parallel applied electric ®eld.

2. Basic formulas

The constitutive equations for piezoelectric materials are

sij � cijklgkl ÿ ekijEk

Di � eiklgkl � eikEk �1�
where sij, gij are the stress tensor and strain tensor respectively. Di, Ei are the electric displacement and
electric ®eld, respectively, cijkl, eikl, and eij are the elastic, piezoelectric and dielectric constants,
respectively. The mechanical and electrical equilibrium equations take the form

sij, i � 0

Di, i � 0 �2�
Strain gij, electric ®eld Ei can be expressed as
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gij �
1

2
�ui, j � uj, i �

Ei � ÿf,i �3�
where ui is displacement, and f is the electric potential.

Substituting Eqs. (1) and (3) into Eq. (2), one obtainÿ
cijkluk � elijf

�
,li
� 0

�eikluk ÿ eilf�,li� 0 �4�
Consider two-dimensional problem, the general solution can be expressed by complex potential�

ui, f
	 � af�z1x� z2y� �5�

where a is a four-component column. z1 � 1, z2 � p, Substituting Eq. (5) into Eq. (4), it follows

�cajkbak � eabja4�zazb � 0

�eabkak ÿ eaba4�zazb � 0 �6�

where a, b take on the values 1 and 2. j, k have the values 1, 2 and 3. This is an eigen problem for
column a: Suo et al. (1992) have shown that the eigenequation of this problem has eight complex roots
form four conjugate pairs. Let p1, p2, p3, p4 be the four roots with positive imaginary part. We have

�
ui, f

	 � 2Re
X4
K�1

aKfK�zK � �7�

where zK � x� pKy:
For the stress and electric displacement components, one obtains

�
s2j, D2

	 � 2Re
X4
K�1

bKf
0
K�zK �

�
s1j, D1

	 � ÿ2ReX4
K�1

bKpKf
0
K�zK � �8�

Column b has the components

bj � �c2jk1ak � e12ja4� � �c2jk2ak � e22ja4�p �9�

b4 � �e21kak ÿ e21a4� � �e22kak ÿ e22a4�p, �10�
Introducing 4� 4 matrices A and B

A � �a1, a2, a3, a4 �, B � �b1,b2, b3,b4 � �11�
De®ne a function vector f �z� of a single variable
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f �z� � �f1�z�, f2�z�, f3�z�, f4�z�	 �12�

Then the generalized displacement and the traction on the real axis can be expressed as

U�x� � �uj, f	 � Af �x� � ÅAf �x� �13�

t�x� � �s2j, D2

	 � Bf 0�x� � ÅBf 0�x� �14�

3. Strip electric saturation model

3.1. Mechanics analysis

Fig. 1 shows a ®nite crack of length 2a in an in®nite piezoelectric plate subjected to remote stresses
s111, s

1
22 and electric displacements D11 , D12 loadings. The crack lies on the x-axis. Ahead of the crack

tip, there is a strip electric saturation zone. On the crack faces, the generalized traction should vanish

s22 � 0, t21 � 0, t23 � 0, D2 � 0, jxjRa �15�
In the strip electric saturation zone, we have

u�i � uÿi , s�2i � sÿ2i , D2 � Ds, aRjxjRc �16�
The homogeneous ®elds produced by the applied mechanical and electrical ®elds are

s11 � s111, s22 � s122, t12 � t13 � t23 � 0, �17�

D1 � D11 , D2 � D12 �18�
The inhomogeneous ®elds induced by the crack should satisfy the following boundary conditions on the
crack faces

t��x� � tÿ�x� � ÿT, jxj < a �19�

T � �0, s122, 0, D12 	 �20�

On the strip electric saturation zone, we have

t��x� � tÿ�x� �21�

Fig. 1. An electric saturation crack perpendicular to the poling axis.
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u�i � uÿi , aRjxjRc, i � 1, 2, 3 �22�

D�2 � Dÿ2 � Ds ÿD12 �23�
The continuity of t�x� on the whole real axis implies that

Bf 0 ��x� � ÅB Åf
0 ÿ�x� � Bf 0 ÿ�x� � ÅB Åf

0 ��x�, ÿ1 < x < �1:
From above equation, Suo et al. (1992) have shown that

h�z� � Bf 0�z� � ÅB Åf
0�z� �24�

where f �z� is the complex function vector of the inhomogeneous ®eld. This complex function vector h�z�
should satisfy the boundary condition (19) along the crack faces,

h��x� � hÿ�x� � ÿT, jxj < a �25�
On the other hand, we have

iddd 0�x� � HBf 0��x� ÿHBf 0 ÿ�x� �26�
where ddd 0�x� � fu�1 ÿuÿ1 , u

�
2 ÿuÿ2 , u

�
3 ÿuÿ3 , f

�ÿfÿg is the generalized opening displacement. H is a real
matrix

H � 2Re
�
iABÿ1

	
�27�

Introduce a new complex function vector

g�z� � HBf 0�z� �28�
From Eq. (22), one can see that the component functions gi�z�, i � 1, 2, 3 are holomorphic in whole z
plane with a cut �ÿa, a�: The component function g4�z� is a holomorphic function in whole z plane with
a cut �ÿc, c�: From Eq. (28), one obtains

h�z� � Hÿ1g�z� � LLLg�z� �29�
where

LLL � Hÿ1: �30�
Eq. (25) can be represented in its component form,

Lik

ÿ
g�k �x� � gÿk �x�

�� Li4

ÿ
g�4 �x� � gÿ4 �x�

� � ÿTi, i � 1, 2, 3, jxj < a �31�

L4k

ÿ
g�k �x� � gÿk �x�

�� L44

ÿ
g�4 �x� � gÿ4 �x�

� � ÿT4, jxj < a �32�
Eliminating g�4 �x� � gÿ4 �x� from Eqs. (31) and (32), one obtains

L�ik
ÿ
g�k �x� � gÿk �x�

� � ÿT �i , jxj < a �33�
where

L�ik � Lik ÿ Li4L4k=L44,
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T �i � Ti ÿ T4Li4=L44, i, k � 1, 2, 3 �34�
Eq. (33) can be rewritten in vector form as,

LLL�g���x� � LLL�g�ÿ�x� � ÿT�, jxj < a �35�
where LLL� is 3� 3 matrix, the elements are L�ij : g�, T� are two three-component columns.

g��z� � �g1�z�, g2�z�, g3�z�	 �36�

T� � �T �1, T �2, T �3	 �37�

Obviously the function vector g��z� is holomorphic in whole z plane except cut L. From Eq. (35), one
obtains

LLL�g��z� � T�f 00�z� �38�

f 00�z� �
1

2

�
z����������������

z2 ÿ a2
p ÿ 1

�
�39�

From Eqs. (23), (28) and (32), it follows,

g�4 �x� � gÿ4 �x� � ÿ
�
L4k

�
g�k �x� � gÿk �x�

�� T4

	
L44, jxj < a

g�4 �x� � gÿ4 �x� � ÿ
�
L4k

�ÿ
g�k �x� � gÿk �x�

�� T4

	
=L44 �Ds=L44 aRjxjRc �40�

The solution of Eq. (40) is

g4�z� �
�ÿ L4kgk�z� � T4f

0
c�z�

	
=L44 �Dsg0�z�=L44 �41�

where

f 0c�z� �
1

2

�
z���������������

z2 ÿ c2
p ÿ 1

�

g0�z� � 1

p

8>>>><>>>>:
p
2
ÿ 1

2i
log

z

a
�

����������������
c2 ÿ a2
p���������������
z2 ÿ c2
p � i

z

a
�

����������������
c2 ÿ a2
p���������������
z2 ÿ c2
p ÿ i

ÿ z���������������
z2 ÿ c2
p arccos

�
a

c

�9>>>>=>>>>;, �42�

It can be easily proved that the function g0�z� is holomorphic in whole z plane outside the cut �ÿc, c�:
The complex function g0�z� has the following behaviors,

g�0 �x� � gÿ0 �x� � 0, jxj < a

g�0 �x� � gÿ0 �x� � 1, aRjxjRc �43�
The function g0�z� vanishes at in®nite. The function log z�i

zÿi is calculated according to Fig. 2.
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log
z� i

zÿ i
� log

r2
r1
� i�y2 ÿ y1� �44�

where r1 and r2 are the amplitudes of the complex variables z� i and zÿ i, respectively. y1 and y2 are
the inclined angles of the complex variables z� i and zÿ i with respect to the negative imaginary axis.
Eqs. (38) and (41) provide the complete solution of g�z�:

In order to evaluate the size of the strip electric saturation zone ahead of the crack tip, let us consider
the traction ahead of the electric saturation zone. We have

t�x� � fs21, s22, s23, D2g � Bf 0 ��x� � Bf 0 ÿ�x� � LLLg��x� � Lgÿ�x�, jxj > c �45�

D2 � L4k

ÿ
g�k �x� � gÿk �x�

�� L44

ÿ
g�4 �x� � gÿ4 �x�

�
� 2T4f

0
c�x� �Ds

ÿ
g�0 �x� � gÿ0 �x�

�

�
�
D12 ÿ

2

p
Dsarccos

�
a

c

��
x����������������

x 2 ÿ c2
p ÿD12 �Ds

2

p

8>>>><>>>>:
p
2
ÿ 1

2i
log

x

a
�

����������������
c2 ÿ a2
p����������������
x 2 ÿ c2
p � i

x

a
�

����������������
c2 ÿ a2
p����������������
x 2 ÿ c2
p ÿ i

9>>>>=>>>>;, jxj > c �46�

Since the electric displacement D2 is ®nite, the coe�cient of the singular term x�����������
x 2ÿc 2
p must vanish.

Hence we get

a

c
� cos

�
pD12
2Ds

�
�47�

This result is completely similar with the Dugdale model. Thus, we have

Fig. 2. Calculation scheme of complex function log z�i
zÿi :
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D2 � 2

p
Ds

8>>>><>>>>:
p
2
ÿ 1

2i
log

x

a
�

����������������
c2 ÿ a2
p����������������
x 2 ÿ c2
p � i

x

a
�

����������������
c2 ÿ a2
p����������������
x 2 ÿ c2
p ÿ i

9>>>>=>>>>;ÿD12

� 2

p
Ds

�
p
2
ÿ 1

2
�y2 ÿ y1�

�
ÿD12 , x > c, y � 0

The total electric displacement �D2�total is

�D2�total�
2

p
Dsarctan

 
x

a
�

����������������
c2 ÿ a2
p����������������
x 2 ÿ c2
p

!
, x > c, y � 0 �48�

Now we consider the stress ®eld ahead of the crack tip. From Eqs. (25), (29) and (38), it follows

t�x� � h��x� � hÿ�x� �49�

ti�x� � Lik

ÿ
g�k �x� � gÿk �x�

�� Li4

ÿ
g�4 �x� � gÿ4 �x�

�
� L�ik

ÿ
g�k �x� � gÿk �x�

�� Li4

n
D12

ÿ
f 0 �c �x� � f 0 ÿc �x�

��Ds

�
g�0 �x� � gÿ0 �x�

�o
=L44

� 2T �i f
0
0�x� � Li4

�
Ds ÿD12

	
=L44

� T �i
x�����������������

x 2 ÿ a2
p ÿ Ti � Li4Ds=L44, a < x < c �50�

The total traction is

�ti�x��total� �s2i �total
� T �i

x�����������������
x 2 ÿ a2
p � Li4Ds=L44, a < x < c �51�

Obviously, this traction ®eld can be characterized by the stress intensity factors:

KII �
������
pa
p �

s112 ÿ
L14

L44
D12

�

KI �
������
pa
p �

s122 ÿ
L24

L44
D12

�

KIII �
������
pa
p �

s123 ÿ
L34

L44
D12

�
�52�
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3.2. Crack perpendicular to the poling axis

Fig. 1 shows a ®nite crack perpendicular to the poling axis. The matrix H has the following structure

H �

26666666666664

2

CL
0 0 0

0
2

CT
0

2

e

0 0
2

CA
0

0
2

e
0 ÿ2

e

37777777777775
�53�

The elements can be calculated numerically.
The matrix LLL is

LLL �

26666666666664

CL

2
0 0 0

0
CT

2r0
0

CT

2r0

e
e

0 0
CA

2
0

0
CT

2r0

e
e

0 ÿ e
2r0

37777777777775
�54�

where

r0 � 1� CTe
e2

�55�

Substituting above equation into Eq. (52), it follows

KII �
������
pa
p

s112

KI �
������
pa
p �

s122 �
CT

e
D12

�

KIII �
������
pa
p

s123 �56�
For our situation, the in®nite plate only subjects to s111, s

1
22, D

1
1 , D12 loading, hence we have

KII � KIII � 0

KI �
������
pa
p �

s122 �
CT

e
D12

�
�57�

Since the electric displacements are ®nite and the stress components have the singularity ahead of the
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crack tip. Hence, use of the following local fracture criterion is reasonable.

KI � KIc �58�

Thus we obtain

ÿ
s122
�

f
� sf0 ÿ CT

e
D12 �59�

where

sf0 � KIc������
pa
p �60�

Eq. (59) indicates that the critical failure stress is decreased linearly with applied electric ®eld for a crack
perpendicular to the poling axis. This result is consistent with the experiment result by Park and Sun
(1995) and the result given by Gao et al. (1997).

3.3. Crack parallel to poling axis

Fig. 3 shows a ®nite crack parallel to the poling axis. Matrices H and LLL are

H �

26666666666664

2

CT
0 0

2

e

0
2

CL
0 0

0 0
2

CA
0

2

e
0 0 ÿ2

e

37777777777775
�61�

Fig. 3. A crack parallel to the poling axis.
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LLL �

26666666666664

CT

2r0
0 0

CT

2r0

e
e

0
CL

2
0 0

0 0
CA

2
0

CT

2r0

e
e

0 0 ÿ e
2r0

37777777777775
�62�

where r0 � 1� CTe
e 2 : Thus, we obtain

KII �
������
pa
p �

s112 �
CT

e
D12

�

KI �
������
pa
p

s122

KIII �
������
pa
p

s123 �63�
This result clearly shows that the applied electric ®eld D11 has no e�ect on the stress intensity factors.
The applied electric ®eld D12 , only has the contribution to the stress intensity factor KII: If the in®nite
plate only subjects to the remote loadings s122, D

1
1 , we obtain

KII � KIII � 0, KI � s122
������
pa
p �64�

ÿ
s122
�

f
� KIc������

pa
p �65�

Hence the failure stress �s122�f is not e�ected by the applied electric ®eld D11 :

4. Analysis of fracture stress of piezoelectric ceramics with sharp notch

The fracture tests for piezoelectric ceramics PZT-4 were performed by Park and Sun (1995). Fig. 4
shows the dimensions of their compact tension specimen. The poling direction was along the axis of 19.1
mm dimension. A notch of length 10.5 mm was introduced by cutting with a 0.46 mm thick diamond
wheel perpendicular to the poling direction. Then the notch was further sharpened by a sharp razor
blade with diamond abrasive. Hence, each peace of the compact tension specimens contains a sharp
notch not a sharp crack. But the analyses given in Sections 2 and 3 are only suitable for the sharp
crack. In order to analyse the experimental results by Park and Sun (1995) it is necessary to evaluate the
stress ®elds ahead of the tip of a sharp notch. A program now is carried on for determining the stress
®elds ahead of the notch tip in real geometry of the compact tension specimens of piezoelectric ceramics
PZT-4 by means of ®nite element method. Here, we only discuss an approximate analysis. Fig. 5 shows
a centred sharp notch in an in®nite piezoelectric ceramics. The half of the centred sharp notch has the
same dimension and geometry as that of the sharp notch in the compact tension specimen. If the sharp
notch is treated as a sharp crack, the stress intensity factors and the electric displacement intensity
factors can be calculated based on ®nite element method. Table 1 shows the calculation results for the
compact tension specimens of the piezoelectric ceramics PZT-4 given by one referee. From Table 1, one
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can get following formulae for the stress intensity factor KI and the electric displacement intensity factor
KD:

KI � K
�1�
I P

P0
� K

�2�
I E

E0

KD � K
�1�
D P

P0
� K

�2�
D E

E0
�66�

where P0 � 94:0 N, E0 � 1:0 MV/m, K
�1�
I � 0:81 MN/m3/2, K

�2�
I � 0:0406 MN/m3/2, K

�1�
D � 2:0� 10ÿ4

C/m3/2 and K
�2�
D � 14:4� 10ÿ4 C/m3/2.

The following equivalent principal is introduced in the present analysis: the crack initiation and
propagation from the tip of the sharp notch in the in®nite piezoelectric ceramics will occur, if this sharp
notch is treated as a sharp crack and subjected to the same stress intensity factors and electric
displacement intensity factors as that of the compact tension specimen. The stress intensity factors and
electric displacement intensity factors for a centred crack in an in®nite piezoelectric ceramics are given
by

Fig. 4. A compact tension specimen of piezoelectric ceramics.

Fig. 5. A centred sharp notch in an in®nite piezoelectric ceramics.
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KII �
������
pa
p

s112

KI �
������
pa
p

s122

KIII �
������
pa
p

s123

KD �
������
pa
p

D12 �67�
Since the stress intensity factors KII and KIII equal to zero for the compact specimens, hence we have
s112 � s123 � 0: The remote stress s122 and the remote electric displacement D12 applied on the in®nite
piezoelectric ceramics with a centred crack can be expressed as follows

s122 �
KI������
pa
p

D12 �
KD������
pa
p �68�

Now the same remote stress s122 and the remote electric displacement D12 apply on the in®nite
piezoelectric ceramics with a centred sharp notch. In order to get an analytical solution, the original
centred sharp notch is approximately treated as an elliptic notch with the same length and the same
curvature at the sharp tip of the notch as that of the original centred sharp notch. Let us discuss the
fracture problem of the in®nite piezoelectric ceramics with a sharp elliptic notch and analyse the e�ect
of the remote electric displacement ®eld on the fracture stress. Following the work by Chung and Ting
(1996) the maximum stress �s22�max at the sharp tip of an elliptic notch can be expressed as:

�s22 �max
� FIs122 � FDD

1
2 �69�

where the coe�cient FI is the stress concentrate factor and the coe�cient FD represents the e�ect factor
of the remote electric displacement D12 on the stress �s22�max: The detail formulas for determining the
coe�cients FI and FD are given in Appendix A. The critical maximum stress criterion is adopted in the
present analysis. Hence the fracture stress �s122�f is given byÿ

s122
�

f
� sf ÿ FDD

1
2

FI
�70�

where sf is the fracture strength of the piezoelectric material.

Table 1

The stress intensity factor and the electric displacement intensity factor for compact specimen of PZT-4

No. E (MV/m) P (N) KI (MN/M3/2) KD(10
ÿ4C/m3/2)

1 ÿ0.52 126.0 1.05 ÿ4.80
2 ÿ0.26 108.0 0.90 ÿ1.45
3 0.0 94.0 0.81 2.00

4 0.26 78.9 0.70 5.41

5 0.52 71.4 0.65 9.00

6 1.06 68.1 0.63 16.7
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For a given D12 , one can get the critical stress �s122�f from Eq. (70). Then the critical stress intensity
factor KI and the critical electric displacement intensity factor KD can be obtained from Eq. (67).
Substitute these results into the left-hand side of Eq. (66), one can get the critical load P and the critical
electric ®eld strength E for the compact tension specimens based on the equivalent principal.

The calculated results are shown in Fig. 6 alone with the experiment results by Park and Sun (1995).
The material parameters and the dimensions of the sharp notch are taken from their work. The
curvature r at the sharp notch tip is chosen as 40 mm and the corresponding fracture strength sf is
taken as 192 MPa.

It is worth noting that the present calculation results are consistent with the experimental results by
Park and Sun (1995) besides the data of E > 1 MV/m. Since we do not know the exact value of the
curvature r: Hence the calculation is also carried out for the case of the curvature r � 10 mm and the
corresponding fracture strength sf � 380 MPa. The calculation results are nearly identical with the
results for the case of r � 40 mm. It means that the load P seems not sensitive to the curvature. But the
curvature has signi®cant e�ect on the fracture strength of the piezoelectric ceramics.

5. Discussion

The fully anisotropic analysis presented in this paper con®rms the analysis given by Gao et al. (1997)
which is based on a simpli®ed electroelasticity formulation. The prediction of the strip electric saturation
model broadly agrees with experimental observations. Vicker indentation technique has been used for
producing cracking both perpendicular and parallel to the poling direction (Tobin and Pak, 1993; Virkar
et al., 1991; Lynch et al., 1995). It has been revealed that cracks perpendicular to the poling axis are
longer under a positive applied electric ®eld and shorter under a negative applied electric ®eld. It implies
that the former has a higher fracture resistance and the latter has a lower fracture resistance.

A parallel investigation is to consider the e�ects of electric domain switch. Ferroelectric ceramics
show strong nonlinearities at combined mechanical and electric loadings. The polarization switching

Fig. 6. Comparison of the present calculation results with the experiment results.

T.C. Wang / International Journal of Solids and Structures 37 (2000) 6031±60496044



may play an essential role in response to the complicated nonlinear phenomena. These phenomena have
been modelled by Yang and Suo (1994), Lynch et al. (1995) and Zhu and Yang (1997) among others. A
further study of the fully anisotropic analysis taking into account the e�ects of electric domain switching
is needed. The electric saturation zone is assumed to concentrate on a line segment in front of the crack
tip in this paper. A more realistic electric saturation model combining with electric domain switching is
more interesting for a through understanding of fracture behaviors of ferroelectric ceramics.
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Appendix A

An ellipse G with semi-axes a and b in the physical plane can be transformed into the unit circle in
the mapping plane z by following mapping function

z � o�z� � R

�
z� m

z

�
�A1�

where R � �a� b�=2, m � �aÿ b�=�a� b�:
Consider the transformation

zK � cKzK �
dK
zK
�K � 1, 2, 3, 4� �A2�

where cK and dK are complex constants and zK � x1 � pKx 2
: The constants cK and dK are chosen such

that when z on G, zK is on the unit circle of the z plane. Hence, we have

cK � aÿ ipKb

2
, dK � a� ipKb

2
�A3�

Follow Chung and Ting (1996) the generalized displacement u and the generalized stress function FFF
outside the G can be expressed as

U � �uj, f	 � Af ��z�� � �Af ��z�� �A4a�

FFF � fFK, K � 1, 2, 3, 4g � Bf ��z�� � ÅBf ��z�� �A4b�
where

f ��z�� �
�
f1�z1�, f2�z2 �, f3�z3�, f4�z4�

	 �A5�

Introduce a new transformation
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z�K � cKz� dK
z
�K � 1,2,3,4� �A6�

All z�K depends on a single variable z:
De®ne a new function F�z�

F�z� � �FK�z�, K � 1, 2, 3, 4
	 �A7a�

FK�z� � fK
ÿ
z�K
� � fK

�
cKz� dK

z

�
�A7b�

Then the generalized displacement u and the generalized stress function FFF on G can be expressed as

U � AF�z� � ÅAF�z� �A8a�

FFF � BF�z� � ÅBF�z� �A8b�
Inside the notch, the stress ®elds vanish and the electric ®elds and the electric displacement ®elds are
uniform. Hence we have

u0 � x1ggg01 � x2ggg02, FFF0 � x1t02 ÿ x2t
0
1 �A9a�

where

ggg01 �
�
g011, g

0
21, 2g

0
31, ÿ E 0

1

	
, ggg02 �

�
g012, g

0
22, 2g

0
32, ÿ E 0

2

	 �A10�
and

t01 �
�
0, 0, 0, D0

1

	
, t02 �

�
0, 0, 0, D0

2

	 �A11�
in which D0

1 � e0E 0
1 and D0

2 � e0E 0
2, e0 is the dielectric constant of the air. Eq. (9) can be written as

u0 � 2Re

�
ggg01 ÿ iggg02

2
z

�
, FFF0 � 2Re

�
t02 � it01

2
z

�
�A12�

The continuity of the generalized displacement u and the generalized stress function FFF on G can be
expressed as

U � AF�z� � ÅAF�z� � 2Re

�
ggg01 ÿ iggg02

2
z

�
�A13a�

FFF � BF�z� � ÅBF�z� � 2Re

�
t02 � it01

2
z

�
�A13b�

The solution of Eq. (A13b) is

BF � Re0b0I4
1

z
� GGG1z� GGG2

1

z
, zO� �A14�

where GGG1 � BCq and GGG2 � ÿ ÅGGG1, q is an unknown column vector, needed to be determined and C is a
matrix
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C � diagfC1, C2, C3, C4g �A15a�
and I4 is a column vector

I4 � f0, 0, 0, 1g �A15b�
Substitute Eq. (A14) into Eq. (A13a), one obtains

ABÿ1I4e0 �b0 ÿ aaa0 �
ÿ
ABÿ1 ÿ ABÿ1

�
BCq=R �A16a�

in which

aaa0 � ggg01 ÿ iggg02
2

�m
ggg01 � iggg02

2
�A16b�

and

b0 �
E 0

2 ÿ iE 0
1

2
�m

E 0
2 � iE 0

1

2
�A16c�

In the in®nity, the function fK�zK� approaches to
fK�zK � � qKzK � qK�x1 � pKx2� �A17�

In the in®nity, we have

f ��z�� � qx1 � Pqx2 �A18a�

FFF � 2Re
�
Bf ��z��

	 � 2Re
�
B�qx1 � Pqx2�

	 �A18b�

where P is the matrix

P � diagfp1, p2, p3, p4g �A18c�
From Eq. (A18), it follows

Bq� Bq � t12 �A19a�

BPq� BPq � ÿt11 �A19b�
t11 and t12 are the remote generalized tractions. One can easily obtained the column vector q from Eq.
(19) for any given t11 and t12 :

Using Eq. (14), the function FK�z� can be expressed as

FK�z� � fK

�
cKz� dK

1

z

�
� xKz� ZK

1

z
�A20�

where

xxx � �x1, x2, x3, x4	 � Cq �A21a�

ZZZ � fZ1, Z2, Z3, Z4g � Bÿ1
�
Re0b0I4 � GGG2

	 �A21b�
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The variable z can be expressed in term of z�K

z � z�K �
������������������������
z�2K ÿ 4cKdK

p
2cK

�A22�

Hence the function fK�z�K� can be written as

fK
ÿ
z�K
� � xK

z�K �
������������������������
z�2K ÿ 4cKdK

p
2cK

� ZK
z�K ÿ

������������������������
z�2K ÿ 4cKdK

p
2dK

�A23�

and

dfK�zK �
dzK

� 1�����������������������
z2K ÿ 4cKdK

p "
xK

zK �
�����������������������
z2K ÿ 4cKdK

p
2cK

ÿ ZK
zK ÿ

�����������������������
z2K ÿ 4cKdK

p
2dK

#
�A24�

when z � 1

dfK�zK �
dzK

� xK
1� ia=pKb

2cK
� ZK

1ÿ ia=pKb

2dK
�A25�

The maximum stress �s22�max on the tip of the sharp elliptic notch can be determined by

�s22 �max
� 2Re

(X4
K�1

B2Kf
0
K�zK �

)
� Re

(X4
K�1

B2K

� �
xK
cK
� ZK

dK

�
�
�
xK
cK
ÿ ZK

dK

�
ia

pKb

�)
�A26�
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